@E HawioHanbHUE TeXHIYHUIA yHiIBEpCUTET YKpaiHU

Kadeppa aBromatusauii

ag «KUIBCbKUIA NONITEXHIYHUIA IHCTUTYT UPTOIT | DOEKTYBAHHA EHEPreTUYHUX

imeHi ITOPA CIKOPCbKOTO»

Higher education level
Knowledge field
Profession

Curriculum

Course status

Form of training
Grade, term

Credits (hours)

Term control
Schedule
Teaching language
Instructors

Po3mileHHA Kypcy

npouecis i cuctem

Syllabus

Software Engineering Components

Software Architecture

Catalog Description

First (Undergraduate)

Information Technologies

121 Software Engineering

Software engineering of intelligent cyber-physical systems and web technologies
Mandatory

Full-time

Third grade, fall semester

5 credits / 150 hours (36 hours of lectures, 36 hours of practice, 78 hours of
individual assignments)

Exam, modular test

http://rozklad.kpi.ua/

Ukrainian/English

Lecturer: Ph.D. Smakovskyi Denys, d.s.smakovskiy@gmail.com
Laboratory work: Smakovskyi Denys, Olha Bespala

https://drive.google.com/drive/folders/1kGiiJRun5cKBEOVO70H9Lyn0OemCmbW-
1?usp=sharing

Course Program

1. Course description, aim, subject, and expected outcomes

The discipline "Components of software engineering" is one of the mandatory disciplines of the training
cycle. The module "Software Architecture" is devoted to the structural principles of software
development and the organization of the software development process for a long time. Much attention
is paid to the patterns of software development and the mechanism of dependency injection to ensure
the development process through testing.

The purpose of the discipline is to acquaint students with modern principles and patterns of software to
achieve optimal organization of software systems.

The subject of the discipline is the concepts and principles of software construction.

Task. As a result of studying the discipline, students should form the following professional
competencies:

PC 2 - Ability to participate in software design, including modeling (formal description) of its
structure, behavior, and functioning processes;

PC 3 - Ability to develop architectures, modules, and components of software systems;

PC 5 - Ability to follow specifications, standards, rules, and recommendations in the professional
field in the implementation of life cycle processes;

PC 7 - Knowledge of information data models, the ability to create software for storage, retrieval
and processing of data;

FC 10 - Ability to accumulate, process and systematize professional knowledge on the creation of
testing and maintenance of software and recognition of the importance of lifelong learning;

FC 11 - Ability to implement phases and iterations of the software life cycle of information
technology systems based on appropriate models and approaches to software development;

FC 12 - Ability to carry out the system integration process, apply change management standards
and procedures to maintain the integrity, overall functionality and reliability of the software;

FC 13 - Ability to reasonably select and master tools for software development and maintenance;

Micna 3aCBOEHHA HaBYaNbHOI AUCUMNAIHU CTYAEHTM MaloTb NPOAEMOHCTPYBATU TaKi NPorpamHi
pe3ynbTaTu HaBYaHHA:

After mastering the discipline, students must demonstrate the following program learning
outcomes:

PRN 1 - Analyze, purposefully search for and select the necessary information and reference
resources and knowledge to solve professional problems, taking into account modern advances in
science and technology.

PRN 2 - Know the code of professional ethics, understand the social significance and cultural
aspects of software engineering and adhere to them in professional activities.

PRN 3 - Know the basic processes, phases, and iterations of the software life cycle.

PRN 4 - Know and apply professional standards and other regulations in the field of software
engineering.

PRN 6 - Ability to select and use the appropriate task methodology for creating software.

PRN 7 - Know and apply in practice the fundamental concepts, paradigms, and basic principles of
operation of language, tools, and computing software engineering

PRN 8 - Be able to develop a human-machine interface

PRN 9 - Know and be able to use methods and tools for collecting, formulating, and analyzing
software requirements.

PRN 10 - Conduct a pre-project survey of the subject area, systematic analysis of the design
object.

PRN 11 - Select source data for design, guided by formal methods of requirements description
and modeling.

PRN 13 - Know and apply methods of algorithm development, software design, and data and
knowledge structures.

PRN 14 - Apply in practice the tools of domain analysis, design, testing, visualization,
measurement and documentation of software.

PRN 15 - Motivated to choose programming languages and development technologies to solve
problems of software creation and maintenance

PRN 16 - Have the skills of team development, approval, design, and release of all types of
software documentation.

PRN 17 - Be able to apply methods of component software development

PRN 18 - Know and be able to apply information technology for data processing, storage, and
transmission.

PRN 19 - Know and be able to apply methods of software verification and validation.

PRN 20 - Know the approaches to assessing and ensuring the quality of software

2. Course prerequisites (Where the course fits into our curriculum)

Prerequisites of the discipline. Students must have the basics of programming, algorithms and data
structures, databases.

Post-requisites of the discipline. The acquired knowledge in the study of the discipline forms the basic
knowledge for the study of the following disciplines: "Software Security" and "Building scalable data
processing systems in real-time", as well as undergraduate practice and diploma design.

3. Course contents

The discipline consists of four credit modules:

“Software Engineering Components-1. Introduction to Software Engineering ”,“ Software
Engineering Components - 2. Software Modeling. Software Requirements Analysis. ”,“ Software
Engineering Components - 3. Software Architecture ”,“ Software Engineering Components 4.

Software Quality and Testing ”. This syllabus describes the “Software Architecture” module.

Topic 1. Overview of the capabilities of modern programming languages for building
systems with an architecture that supports stable modification.

1.1. Reflection technology for the Java programming language. Reflection as a basis for building
modern frameworks. Proxy as a mechanism for introducing additional components into existing code.

1.2. Test Driven Development using JUnit.

1.3. Basics of MVC pattern. Dependence substitution testing.

Topic 2. Patterns for building components of software systems that support modification.

2.1. Review. GoF patterns. Structural, creational, and behavioral patterns

2.2. GRASP Pattern Review: Creator, Information Expert, Low Coupling, Controller, High
Cohesion, Polymorphism, Pure Fabrication, Indirection, Protected Variations.

2.3. Examples of using GRASP patterns.

2.4. Database architecture and software for their design and reverse engineering.

2.5. SOLID object-oriented programming principles: Single responsibility principle, open-closed
principle, Liskov substitution principle, interface segregation principle, dependency inversion principle.

Topic 3. Modern frameworks as a further development of design patterns

3.1. Overview of the Spring framework. Application architecture on Spring.

3.2. XML configuration and concept of beans in Spring.

3.3. Injecting dependencies into Spring.

3.4. Bean settings. Properties.

3.5. Configuration on bean annotations. Bean life cycle callbacks. BeanPostProcessor

3.6. Access to databases using Spring Data, transactions in Databases.

3.7. Aspect-oriented programming on Spring.

Topic 4. REST architectural principle. Spring MVC framework for Web applications
development.

4.1. REST architectural principle. Principles of application of methods GET, POST, PUT,
DELETE, PATCH.

4.2. Use the Spring MVC framework based on Spring Boot to build REST-based applications.

4.3. Use the Spring MVC framework based on Spring Boot to build applications with Web page
templates.

4. Course textbooks and materials

Required reading:

1. Maprin P. Yucrta Apxitektypa. MUCTENTBO PO3pOOKH MPOrPaMHOTO 3a0€3MeUeHHs. - XapKiB :
Panok, 2019. 368 c.

2. @pimen E., Pobcon E. Head First. [Tatepuu npoexryBanss. - XapkiB : @abdymna, 2020. - 672 c.

3. Bpayne O. Texnomnorus pa3padotku nporpammHoro obecrnieuenust — CII16.: [Tutep, 2004. — 655
c.

4. Tlemmkua E. B. OcHOBHbIE KOHIENIMM W MEXAaHU3MBI OOBEKTHO-OPUEHTHPOBAHHOTO
nporpammupoBanus — CI16.: BXB-IlerepOypr, 2005. — 640 c.

5. CommepBmin U. UmxeHepust mporpaMMmHoro odecnedeHus — M. : Bunbsimc, 2002. — 624 c.

6. Koncranraiin JI. Pa3paboTka nporpammuoro obecnedenus — CII6.: [Tutep, 2004. — 592 c.

Optional reading:

7. Xamb6m, JI. HempepsiBHOe pa3BepThiBanue I[1O: aBTOoMaTu3ammsi TPOILECCOB COOPKH,
TECTUPOBAaHUS M BHEIPEHUS HOBBIX Bepcuid mporpamm / Jxe3 XambOi. — M.:M3garenbckuii goM
«Bunpsamcey, 2011. — 436 c.

8. I'paxem U. OOBEKTHO-OpUEHTHPOBaHHBIE MeTOABI. [IpuHIMIBEI U mpakTuka — M.: Buibswmc,
2004. - 880 c.

9. Pam6o JIx., SfIkobcon A., Byu. I'. UML: cneunanbhsblii cnpaBounuk. — CII6.: ITurep, 2002. —
656¢.

10. Byu I'. S3eik UML. PykoBoactBo nomas3oBarenst — M.: JIMK Ilpecc; CII6.: ITurep, 2004. —
432 c.

11. JUnit 5 User Guide [Enextponnuii pecypc] : [Beb-caiit]. — Enexkrponni mani. — Pexum
noctymy: https://junit.org/junitS/docs/current/user-guide/ (nara 3sepaerns 26.03.2021) — Ha3Ba 3 ekpana.

12. Getting Started Guides [Enextponnuii pecypc] : [Be6-caiit]. — Enextponni nani. — Pexxum
noctymy: https://spring.io/guides#getting-started-guides (nata 3Bepuenns 26.03.2021) — Ha3sa 3 expana.

13. Building REST services with Spring [Enextponnuii pecypc] : [Be6-caiit]. — Enextponni naHi.
— Pexxum moctymy: https://spring.io/guides/tutorials/rest/ (nara 3sepaerns 26.03.2021) — Haspa 3 ekpana.

Educational Content

5. Pedagogical advice

Lectures

Topic 1. Overview of the capabilities of modern programming languages for building
systems with an architecture that supports stable modification.

Lecture 1. Reflection technology for the Java programming language. Reflection as a basis for
building modern frameworks. Proxy as a mechanism for introducing additional components into existing
code.

Lecture 2. Test-Driven Development with JUnit.

Lecture 3. Basics of MVC pattern. Dependence substitution testing.

Topic 2. Patterns for building components of software systems that support modification.

Lecture 4. Review. GoF patterns. Structural, creational, and behavioral patterns

Lecture 5. GRASP Pattern Review: Creator, Information Expert, Low Coupling, Controller, High
Cohesion, Polymorphism, Pure Fabrication, Indirection, Protected Variations.

Lecture 6. Examples of using GRASP patterns.

Lecture 7. Database architecture and software for their design and reverse engineering.

Lecture 8. SOLID object-oriented programming principles: Single responsibility principle, open-
closed principle, Liskov substitution principle, interface segregation principle, dependency inversion
principle.

Topic 3. Modern frameworks as a further development of design patterns

Lecture 9. Overview of the Spring framework. Application architecture on Spring.

Lecture 10. XML configuration and concept of beans in Spring.

Lecture 11. Injecting dependencies into Spring.

Lecture 12. Bean settings. Properties.

Lecture 13. Configuration on bean annotations. Bean life cycle callbacks. BeanPostProcessor

Lecture 14. Access to databases using Spring Data, transactions in Databases.

Lecture 15. Aspect-oriented programming on Spring.

Topic 4. REST architectural principle. Spring MVC framework for Web applications
development.

Lecture 16. REST architectural principle. Principles of application of methods GET, POST, PUT,
DELETE, PATCH.

Lecture 17. Use the Spring MVC framework based on Spring Boot to build REST-based
applications.

Lecture 18. Use the Spring MVC framework based on Spring Boot to build applications with Web
page templates.

Computer Labs
Topic 1. Overview of the capabilities of modern programming languages for building
systems with an architecture that supports stable modification.

1. Basics of working with Reflection and proxying calls to the object.
2. Development of program components suitable for modular testing and the basis of
development through testing.
Topic 2. Patterns for building components of software systems that support modification.
3. Fundamentals of the Model-View-Controller design pattern and testing through
dependency substitution.
4. GoF patterns in applications with MVC architecture.
5. Design of database architecture with modeling and reverse engineering tools.
Topic 3. The use of modern frameworks as a further development of design patterns
6. BukopucTaHHs iH’ eKUil 3aneXHOCTi 3a 4oNOMOrot openmMBopKy Spring y gogaTkax 3
MVC apxiTekTypoto.
Topic 4. REST architectural principle. Spring MVC framework for Web applications
development
7. BukopuctaHHs cdpenmopky Spring MVC ansa pospobku Beb-gonarkis.

6. Individual Assignments

Students' independent work is divided into 18 weeks. It includes doing a computer workshop and
studying the following sources.

Topic 1. Overview of the capabilities of modern programming languages for building
systems with an architecture that supports stable modification.

1. [1], c. 253-256. Test Boundaries.

2. [11], Getting Started

3. [11], Writing Tests

Topic 2. Patterns for building components of software systems that support modification.

4.[1], c. 221-226. Presenters and modest objects.

5. [2], c. 38-72. Design patterns introduction.
6. [2], c. 73 - 306. Decorator, Abstract Factory, Singleton, Command, Adapter Facade patterns.
7.[2], c. 310 - 521.Template Method Pattern. Iterator and Composer patterns State & Proxy

patterns.

8. [2], c. 526 - 568. CknagHi MNaTepHu. MNMaTepHn ANa KpaLLoro X1TTA. [HWi natepHu.

Topic 3. The use of modern frameworks as a further development of design patterns
9. [12], Building Java Projects with Maven

10. [12], Accessing Relational Data using JDBC with Spring

11. [12],Validating Form Input

12. [12], Accessing Data with JPA

13. [12],Creating Asynchronous Methods

Topic 4. REST architectural principle. Spring MVC framework for Web applications

development

14.[13], Building REST services with Spring
15. [12], Consuming a RESTful Web Service
16. [12],]JAccessing JPA Data with REST

17. [12], Building a RESTful Web Service
18. [12],Securing a Web Application

Course Rules and Assessment Policy

7. Course study rules

In terms of skills and competencies, it is crucial for students to complete a computer workshop.

Students receive a semester rating for the defense of laboratory work. The maximum points that can be
obtained for the performance and defense of laboratory work are given in the table:

Lab Term Score
1 Basics of working with Reflection and proxying 2nd week 10
calls to the object.
2 Development of program components suitable for | 4th week 5
modular testing and the basis of development
through testing.
3 Fundamentals of the Model-View-Controller design | 5th week 10
pattern and testing through dependency
substitution.
4 GoF Patterns 7th week 10
5 DB architecture 9th week 5
6 Dependency Injection 12th week 10
7 Web Project (REST + Web MVC) 18th week 10
Total 60

If the laboratory work is completed in a period later than the period given in the table, the

maximum score is reduced by 20%. A prerequisite for admission to the exam is the completion of all
laboratory work.

The total grade consists of: 1) laboratories (programming assignments) 60%, 2) final exam 40%.

Presently there are three programming assignments, each worth up to 20% of the total grade.
Students have to submit correctly fulfilled assignments during the specified term to obtain the full score
for it, otherwise, 20% penalty points are applied. Other penalty points can be applied for the mistakes or
incompleted subtasks at the lab but not more than 40% of the total score for laboratory work.

8. Assessment policy
How students are assessed: modular test, programming assignments

Calendar control: conducted twice a term to monitor the current state of compliance with the
requirements of the syllabus.

Term assessment: final exam

Admission condition of term assessment: all programming assignment submission, start score not
less than 30 points.

Exam scores map to the course grade according to the table:

Score Grade

100-95 Excellent

94-85 Very Good

84-75 Good

74-65 Satisfactory

64-60 Sufficient

Less than 60 Unsatisfactory
Condlitions for exam Not allowed
admission not met

9. Additional topics

Exam questions (see appendix).
Syllabus:
Developed by DAPPS Department Associate Professor, Ph.D. Denys Smakovskyi
Approved by Design Automation of Power Processes and Systems Department (minutes #16 on June 18, 2021)

Endorsed by Methodical Commission of Heat Power Faculty (minutes #11 on June 24, 2021)

Appendix.

Exam Questions.
1. Reflection as a mechanism for creating frameworks

. Test-Driven Development as the main approach to modern software development
* Unit family frameworks. Testing of basic and erroneous scenarios
Substitution of dependencies at testing with Mock-frameworks. Setting the mocks, checking the

interaction.

Continuous Integration/Deployment/Delivery
GoF patterns. Pattern Types. Pattern Elements.
GoF pattern Abstract Factory

GoF pattern Adapter

GoF pattern Bridge

. GOF pattern Builder

. GoF pattern Chain of Responsibility

. GoF pattern Command

. GoF pattern Composite

. GoF pattern Decorator

. GOF pattern Facade

. GoF pattern Factory Method

. GoF pattern Flyweight

. GoF pattern Interpreter

. GoF pattern Iterator

. GoF pattern Mediator

. GoF pattern Memento

. GOF pattern Observer

. GOF pattern Prototype

. GoF pattern Proxy

. GoF pattern Singleton

. GoF pattern State

. GOF pattern Strategy

. GOF pattern Template Method

. GoF pattern Visitor

. Grasp Patterns. Responsibility(1Driven Design
. Grasp Pattern. Creator

. Grasp Pattern. Information Expert (or just Expert)
. Grasp Pattern Low Coupling

. Grasp Pattern Controller

. Grasp Pattern High Cohesion

. Grasp Pattern Polymorphism

. Grasp Pattern Pure Fabrication

. Grasp Pattern Indirection

. Grasp Pattern Protected Variations

. Domain-Driven Design. Databases modeling.
. The CAP Theorem

. Reliability of distributed systems

. Scalability of distributed systems

. Event-Driven Architectures

. Event Sourcing

.CQRS

. SOLID. Single responsibility principle

. SOLID. Open—closed principle

. SOLID. Liskov substitution principle

. SOLID. Interface segregation principle
. SOLID. Dependency inversion principle
. Dependency injection

53. Inversion of Control

54. Spring 1oC Container. Application context
55. Spring beans. Bean Scopes. Lifecycles

56. Aspect-oriented programming. Spring AOP.

